Graded n-secondary submodules

Mahdieh Ebrahimpour

Department of Mathematics, Vali-e-Asr University, Rafsanjan, Iran

Throughout this work all rings are commutative with non-zero unity, unless it is expressly stated that R can be without unity. We first remind the dual of some classical graded concepts and then the dual of their extended graded notions is studied.
A proper graded submodule N of a G-graded R-module M is said to be graded prime (primary) if $a_{g} \in h(R)$ and $x_{h} \in h(M)$ with $a_{g} x_{h} \in N$ implies $a_{g} \in\left(N:_{R} M\right)\left(a_{g} \in \sqrt{\left(N:_{R} M\right)}\right)$ or $x_{h} \in N$. Also, a proper graded ideal I of R is a graded prime (primary) ideal if I is a graded prime (primary) submodule of the graded R-module R. If I is a graded ideal of R, then $G-r a d(I)=\left\{a \in R \mid a_{g} \in \sqrt{I}\right\}$.

Lemma 1

Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M. Then the following statements are equivalent.
(1) N is a graded prime (primary) submodule of M.
(2) For every $a_{g} \in h(R)$ and $x \in M, a_{g} x \in N$ implies
$a_{g} \in\left(N:_{R} M\right)\left(a_{g} \in \sqrt{\left(N:_{R} M\right)}\right)$ or $x \in N$.
(3) For every $a \in R$ and $x_{h} \in h(M)$, $a x_{h} \in N$ implies $a \in\left(N:_{R} M\right)$ $\left(a \in G-\operatorname{rad}\left(N:_{R} M\right)\right)$ or $x_{h} \in N$.

From a functional point of view, a proper graded submodule N of a graded R-module M is a graded primary submodule, if for each $a_{g} \in h(R)$ the graded homomorphism $a_{g} .: \frac{M}{N} \rightarrow \frac{M}{N}$, that operates by multiplication, is either injective or nilpotent by the above lemma.

Let R be a G-graded ring and M a graded R-module. We say that a non-zero graded submodule N of M is graded secondary if for each $a_{g} \in h(R)$ the function $a_{g} .: N \rightarrow N$, that operates by multiplication, is either surjective or nilpotent, i.e., for every $a_{g} \in h(R)$ either $a_{g} N=N$ or $a_{g} \in \sqrt{\left(A n n_{R}(N)\right.}$. Note that this concept is a dual notion of graded primary submodules in a certain sense as follows. We say that M is a graded secondary R-module if M is a graded secondary submodule of itself. Also, we say that M is a graded primary R-module if zero is a graded primary submodule of M. So the concept of graded secondary R-modules is just the dual notion of graded primary R-modules, see [9].

Let n be a positive integer. A proper graded submodule N of a graded R-module M is said to be graded n-absorbing (primary) if whenever $a_{g_{1}} \ldots a_{g_{n}} x_{g} \in N$ implies $a_{g_{1}} \ldots a_{g_{n}} \in\left(N:_{R} M\right)$ $\left(a_{g_{1}} \ldots a_{g_{n}} \in \sqrt{\left(N:_{R} M\right)}\right)$ or $a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} x_{g} \in N$ for some $1 \leq i \leq n$, where $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R), x_{g} \in h(M)$ and $a_{g_{1}} \ldots \widehat{a_{g}} \ldots a_{g_{n}} x_{g}$ means $a_{g_{1}} \ldots a_{g_{i-1}} a g_{g_{i+1}} \ldots a_{g_{n}} x_{g}$. So a graded 1 -absorbing primary submodule is exactly a graded primary submodule. Also, a proper graded ideal I of R is called a graded n-absorbing (primary) ideal if I is a graded n-absorbing (primary) submodule of the graded R-module R, see [13].

In this work, we present a functional equivalent condition to the concept of graded n-absorbing primary submodules. So we can specify a dual notion of this concept in a certain sense, which we call that graded n-secondary submodules.
Next, a trivial extension of Lemma 1 is presented. Throughout, we consider the part (2) of Lemma 2 as the definition of graded n-absorbing (primary) submodules.

Lemma 2

Let n be a positive integer, R a G-graded ring, M a graded R-module and N a graded submodule of M. Then the following statements are equivalent.
(1) N is a graded n-absorbing (primary) submodule of M.
(2) For every $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$ and $x \in M, a_{g_{1}} \ldots a_{g_{n}} x \in N$ implies $a_{g_{1}} \ldots a_{g_{n}} \in\left(N:_{R} M\right)\left(a_{g_{1}} \ldots a_{g_{n}} \in \sqrt{\left(N:_{R} M\right)}\right)$ or $a_{g_{1}} \ldots$ $\widehat{a_{g_{i}}} \ldots a_{g_{n}} x \in N$ for some $1 \leq i \leq n$.
(3) For every $a_{1}, \ldots, a_{n} \in R$ and $x_{g} \in h(M), a_{1} \ldots a_{n} x_{g} \in N$ implies $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)\left(a_{1} \ldots a_{n} \in G-\operatorname{rad}\left(N:_{R} M\right)\right)$ or $a_{1} \ldots$ $\widehat{a}_{i} \ldots a_{n} x_{g} \in N$ for some $1 \leq i \leq n$.

Next, we present a functional method, which gives us an equivalent condition to the concept of graded n-absorbing primary submodules. For this, we need some new definitions as follows.

Definition

Let R be a G-graded ring, M a graded R-module, N a proper graded submodule of M, n a positive integer, $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$ and the graded homomorphism $a_{g_{i}}^{*}: a_{g_{1}} \ldots \widehat{a_{g}} \ldots a_{g_{n}} \frac{M}{N} \rightarrow \frac{M}{N}$, defined by $a_{g_{i}}^{*}\left(a_{g_{1}} \ldots \widehat{g_{i}} \ldots a_{g_{n}}(x+N)\right)=a_{g_{1}} \ldots a_{g_{n}} x+N$ for every $x \in M$, where $1 \leq i \leq n$. Then
(1) We say that the family $\left\{a_{g_{i}}^{*} \mid 1 \leq i \leq n\right\}$ is injective if $a_{g_{1}} \ldots a_{g_{n}} x \in N$ implies $a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} x \in N$ for some $1 \leq i \leq n$, where $x \in M$.
(2) We say that the family $\left\{a_{g_{i}}^{*} \mid 1 \leq i \leq n\right\}$ is nilpotent, if $a_{g_{1}}^{*} O \ldots o a_{g_{n}}^{*}$ is a nilpotent function.

Theorem

Let R be a G-graded ring, M a graded R-module and n a positive integer. A proper graded submodule N of M is a graded n-absorbing primary submodule of M if and only if the family $\left\{a_{g_{i}}^{*} \mid 1 \leq i \leq n\right\}$ of graded homomorphisms is either injective or nilpotent for every $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$.

Definition

Let n be a positive integer and R a G-graded ring (not necessarily with unity). We say that a non-zero graded submodule N of a graded R-module M is a graded n-secondary submodule, if for every $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$ there exists an $1 \leq i \leq n$ such that the graded homomorphism $a_{g_{i}}^{* *}: N \rightarrow a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} N$, defined by $a_{g_{i}}^{* *}(x)=a_{g_{1}} \ldots a_{g_{n}} x$ for every $x \in N$, is either surjective or nilpotent. So every graded 1 -secondary submodule is just a graded secondary submodule.

We say that a graded R-module is a graded n-secondary R-module if M is a graded n-secondary submodule of itself. So the notion of graded n-secondary R-modules is just the dual notion of graded n-absorbing primary R-modules. Therefore, it can be concluded that the concept of graded n-secondary R-modules is just the dual notion of graded n-absorbing primary R-modules. Hence we can say that the notion of graded n-secondary submodules is the dual notion of graded n-absorbing primary submodules (in a certain sense).

Let R be a G-graded ring, n, m two positive integers with $n \leq m$ and M a graded R-module. Clearly, every graded n-secondary submodule of M is graded m-secondary. Next, we show that the converse is not true in general.

Example

Let $F=\mathbb{Z}_{2}, G$ an arbitrary group, R the trivial G-graded polynomial ring $F[x], S=R x, J$ the graded ideal generated by $\left\{x+x^{2}, x+x^{3}, \ldots\right\}$ of R and $M=\frac{R}{J}$ as a graded S-module. We claim that M is not a graded secondary S-module, while it is a graded 2 -secondary S-module.
If there exists a positive integer m such that $x^{m} \in A n n_{S}(M)$, then $x^{m} \in J$. So there exists a positive integer k and non-zero $g_{1}, \ldots, g_{k} \in h(R)$ such that $x^{m}=g_{1}\left(x+x^{r_{1}}\right)+\ldots+g_{k}\left(x+x^{r_{k}}\right)$, where r_{1}, \ldots, r_{k} are positive integers with $r_{1}<r_{2}<\ldots<r_{k}$.

Note that the number of x^{m} 's in the right side of the equality is an odd number and the number of summands of each of $g_{i}\left(x+x^{r_{i}}\right)$ is an even number. Without loss of generality, we can assume that there exists an odd number $1 \leq I \leq k$ such that $x^{m} \in g_{j}\left(x+x^{r_{j}}\right)$ for every $1 \leq j \leq I$. So $0=\left[g_{r_{1}}\left(x+x^{r_{1}}\right)-x^{m}\right]+\ldots+\left[g_{r_{1}}(x+\right.$ $\left.\left.x^{r_{l}}\right)-x^{m}\right]+g_{r_{l+1}}\left(x+x^{r_{1+1}}\right)+\ldots+g_{r_{k}}\left(x+x^{r_{k}}\right)$, where the number of summands in the right side is an odd number and so the number of non-zero summands in the right side is also an odd number. Hence there exists an odd number n such that $0=x^{\gamma_{1}}+\ldots+x^{\gamma_{n}}$, where $\gamma_{1}<\gamma_{2}<\ldots<\gamma_{n}$ which is impossible. Therefore, $x \notin \sqrt{\left({\left.A n n n_{S}(M)\right)}^{c}\right.}$.

We claim that $M \neq x M$. If not, there exists a $g \in h(R)$ such that $1-x g \in J$ which is impossible. Because the elements of J are coefficients of x.
Now, we show that for each $f_{1}, f_{2} \in h(S)$ either $f_{1} f_{2} M=f_{1} M$ or $f_{1} f_{2} M=f_{2} M$. Since $f_{1}, f_{2} \in S$, there exist $g_{1}, g_{2} \in h(R)$ such that $f_{1}=x g_{1}$ and $f_{2}=x g_{2}$. If the number of summands of g_{1} is an even number, then $f_{1} f_{2} M=g_{1} g_{2} x^{2} M=g_{1} x M=f_{1} M=0$. Because for every positive integers γ, δ such that $1 \leq \gamma \leq \delta$, $x^{\gamma}+x^{\delta}=x^{\gamma-1}\left(x+x^{\delta-\gamma+1}\right) \in J$. Similarly, if the number of summands of f_{2} is an even number, then $f_{1} f_{2} M=f_{2} M=0$. Now, suppose that the number of summands of each of f_{1}, f_{2} is an odd number.

Let $I \in h(R)$. We claim that there exists an $I_{1} \in h(R)$ such that $g_{1} x I-g_{1} g_{2} x^{2} I_{1} \in J$. If the number of summands of I is an odd number, then put $I_{1}=1$. So the number of summands of $g_{1} x I-g_{1} g_{2} x^{2} l_{1}$ is an even number and so $g_{1} x I-g_{1} g_{2} x^{2} l_{1} \in J$, as explained above. If the number of summands of l is an even number, then put $I_{1}=1+x$. Hence the number of summands of each of $g_{1} x l, g_{1} g_{2} x^{2} l_{1}$ is an even number. Thus $g_{1} x I-g_{1} g_{2} x^{2} l_{1} \in J$ and so $f_{1} M \subseteq f_{1} f_{2} M$. Hence $f_{1} M=f_{1} f_{2} M$. Thus either $f_{1}^{* *}$ is surjective or $f_{2}^{* *}$ is so.

Theorem

Let R be a G-graded ring, n a positive integer and M a finitely generated graded R-module. If M is a graded n-secondary R-module, then M is a graded n-absorbing primary R-module.

Let R be a G-graded ring and M a graded R-module. A proper graded submodule N of M is said to be a graded completely irreducible submodule, if $N=\cap_{i \in I} N_{i}$ implies $N=N_{i}$ for some $i \in I$, where $\left\{N_{i} \mid i \in I\right\}$ is a family of graded submodules of M. It is easy to show that every proper graded submodule K of M is an intersection of graded completely irreducible submodules of M.

Let R be a G-graded ring and N a non-zero graded submodule of a graded R-module M. It is not difficult to verify that N is a graded secondary submodule of M if and only if for every $a_{g} \in h(R)$ and every graded completely irreducible submodule K of $M, a_{g} N \subseteq K$ implies either $a_{g} \in \sqrt{A n n_{R}(N)}$ or $N \subseteq K$. Next, this result is extended and an equivalent condition to the concept of graded n-secondary submodules is presented.

Theorem

Let n be a positive integer, R a G-graded ring, M a graded R-module and N a non-zero graded submodule of M. Then N is a graded n-secondary submodule of M if and only if for every $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$ and every graded completely irreducible submodules K_{1}, \ldots, K_{n} of $M, a_{g_{1}} \ldots a_{g_{n}} N \subseteq \cap_{j=1}^{n} K_{j}$ implies

$$
\begin{aligned}
& a_{g_{1}} \ldots a_{g_{n}} \in \sqrt{A n n_{R}(N)} \text { or } a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} N \subseteq \cap_{j=1}^{n} K_{j} \text { for some } \\
& 1 \leq i \leq n .
\end{aligned}
$$

Definition

We say that a non-zero graded submodule N of a graded R-module M is a graded n-absorbing secondary (graded strongly n-absorbing secondary) submodule, if whenever $a_{g_{1}} \ldots a_{g_{n}} N \subseteq K$ implies $a_{g_{1}} \ldots a_{g_{n}} \in \sqrt{A n n_{R}(N)}$ or $a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} N \subseteq K$ for some $1 \leq i \leq n$, where $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$ and K is a graded completely irreducible submodule (a graded submodule) of M. For general modules see $[2,5]$.

Next, we show that the concepts of graded n-secondary and graded strongly n-absorbing secondary submodules are equivalent, while these are not equivalent to the concept of graded n-absorbing secondary submodules.

Theorem

Let n be a positive integer, R a G-graded ring, M a graded R-module and N a non-zero graded submodule of M. Then the following statements are equivalent.
(1) N is a graded n-secondary submodule of M.
(2) for every $a_{g_{1}}, \ldots, a g_{n} \in h(R)$ and every graded submodule K of $M, a_{g_{1}} \ldots a_{g_{n}} N \subseteq K$ implies $a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} N \subseteq K$ for some $1 \leq i \leq n$ or $a_{g_{1}} \ldots a_{g_{n}} \in \sqrt{A n n_{R}(N)}$.
(3) for every $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R), a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} N=a_{g_{1}} \ldots a_{g_{n}} N$ for some $1 \leq i \leq n$ or $a_{g_{1}} \ldots a_{g_{n}} \in \sqrt{A n n_{R}(N)}$.

Example

Let $n \geq 2$ be a positive integer, G an arbitrary group and R the trivial G-graded ring $\mathbb{Z}, p_{g_{1}}=2, p_{g_{2}}, \ldots, p_{g_{n+2}}$ distinct positive prime integers, $s=p_{g_{1}} \ldots p_{g_{n+2}}$ and $M=\mathbb{Z}_{s}$ as a graded R-module. Clearly, every graded submodule of M is of the form $p_{g_{1}}^{\alpha_{1}} p_{g_{2}}^{\alpha_{2}} \ldots p_{g_{n+2}}^{\alpha_{n+2}} \mathbb{Z}_{s}$, where $0 \leq \alpha_{j} \leq 1$ for every $1 \leq j \leq n+2$. Let $T_{k}=p_{g_{k}} \mathbb{Z}_{s}$ for every $1 \leq k \leq n+2$. It is not difficult to verify that the only graded completely irreducible submodules of M are T_{1}, \ldots, T_{n+2}.

Let $a_{h_{1}}, a_{h_{2}} \in h(R)$, with $a_{h_{1}} a_{h_{2}} T_{1} \subseteq T_{k}$ for some $1 \leq k \leq n+2$. So $p_{g_{k}} \mid a_{h_{1}}$ or $p_{g_{k}} \mid a_{h_{2}}$. Thus either $a_{h_{1}} T_{1} \subseteq T_{k}$ or $a_{h_{2}} T_{1} \subseteq T_{k}$. Therefore, T_{1} is a graded 2 -absorbing secondary and so a graded n-absorbing secondary submodule of M.
Evidently, $p_{g_{2}} \ldots p_{g_{n+1}} T_{1} \subseteq \cap_{j=2}^{n+1} T_{j}$. But there is no $2 \leq i \leq n+1$ such that $p_{g_{2}} \ldots \widehat{p_{i}} \ldots p_{g_{n+1}} T_{1} \subseteq \cap_{j=2}^{n+1} T_{j} \subseteq T_{i}$, because $p_{g_{i}} V p_{g_{1}} \ldots \widehat{p_{g_{i}}} \ldots p_{g_{n+1}}$. Also, $p_{g_{2}} \ldots p_{g_{n+1}} \notin \sqrt{\operatorname{Ann}_{R}\left(T_{1}\right)}$. Therefore, T_{1} is not a graded n-secondary submodule of M and so it is not a graded strongly n-absorbing secondary submodule of M by the above theorem.

Theorem

Let R be a G-graded ring, M a graded R-module and n a positive integer. If N is a graded n-secondary submodule of M, then $A n n_{R}(N)$ is a graded n-absorbing primary ideal of R.

Let R be a G-graded ring and n a positive integer. Clearly, if I is a graded n-absorbing primary ideal of R, then \sqrt{l} is a graded n-absorbing ideal of R.

Corollary

Let R be a G-graded ring, M a graded R-module and n a positive integer. If N is a graded n-secondary submodule of M, then $\sqrt{A n n_{R}(N)}$ is a graded n-absorbing ideal of R.

Let R be a G-graded ring. If N is a graded n-secondary submodule of a graded R-module M with $p=\sqrt{A n n_{R}(N)}$, then we say that N is a graded p - n-secondary submodule of M.

Definition

Let R be a G-graded ring (not necessarily with unity) and n a positive integer. We say that a graded R-module M is graded n-divisible, if for every $x \in M$ and every $a_{g_{1}}, \ldots, a_{g_{n}} \in h(R)$ with $\left(a_{g_{1}} \ldots a_{g_{n}}\right)^{m} \neq 0$ for every positive integer m there exists an $1 \leq i \leq n$ and a $y \in M$ such that $a_{g_{1}} \ldots a_{g_{n}} y=a_{g_{1}} \ldots \widehat{a_{g_{i}}} \ldots a_{g_{n}} x$. Clearly, if M is a non-zero graded 1-divisible R-module, then $A n n_{R}(M) \cap h(R)=0$.

Example

Let G be a group, I an index set, R_{i} a G-graded integral domain, K_{i} the field of fractions of R_{i} for every $i \in I$ and R the G-graded ring $\oplus_{i \in I} R_{i}$. Then $K=\oplus_{i \in I} K_{i}$ is a graded n-divisible R-module for every positive integer n.

Theorem

Let R be a G-graded ring, n a positive integer, M a graded R-module and N a non-zero graded submodule of M with $p=\sqrt{\left(A n n_{R}(N)\right.}$. Then the following statements are equivalent.
(1) N is a graded p - n-secondary submodule of M.
(2) N is a graded n-divisible $\frac{R}{p}$-module.

Let R be a G-graded ring and n, m two positive integers with $m \leq n$. Evidently, every graded m-divisible R-module is a graded n-divisible R-module. Nevertheless, we show that the converse is not true in general.

Example

Let R be the \mathbb{Z}-graded polynomial ring $F[x]$, where F is a field, m, n two positive integers with $m<n, T=\oplus_{i \in \mathbb{Z}} T_{i}$, where $T_{i}=R_{i}$ for every non-zero integer $i, T_{0}=0, S=\oplus_{i \in \mathbb{Z}} S_{i}$, where $S_{i}=R_{i}$ for every $i \geq n, S_{i}=0$ for every $i<n$ and $M=\frac{T}{S}$ as a T-module. Let $f_{g_{1}}, \ldots, f_{g_{n}} \in h(T)$ with $\left(f_{g_{1}} \ldots f_{g_{n}}\right)^{t} \neq 0$ for every positive integer t. If $f+S \in M$, then $f_{g_{1}} \ldots \widehat{f}_{g_{i}} \ldots f_{g_{n}} f-f_{g_{1}} \ldots f_{g_{n}} x \in S$ for every $1 \leq i \leq n$. Thus M is an n-divisible T-module. Let $f_{g_{1}}=\ldots=f_{g_{m}}=x$. Then there is no $f+S \in M$ such that $x^{m} f+S=x^{m-1}(x+S)$. Therefore, M is not an m-divisible T-module.

Recall that a proper graded ideal m of R is said to be a maximal graded ideal if $m \subseteq I \subseteq R$ implies $I=m$ or $I=R$, where I is a graded ideal of R. We denote the set of all maximal graded ideals of R by $g-\operatorname{Max}(R)$.

Proposition

Let R be a G-graded ring, n a positive integer and M a graded R-module. If N is a graded submodule of M with
$A n n_{R}(N)=p \in g-\operatorname{Max}(R)$, then N is a graded $p-n$-secondary submodule of M.

Theorem

Let $n \geq 2$ be a positive integer, R a G-graded ring, M a graded R-module and N a graded n-secondary submodule of M. Then the following statements hold.
(1) If K is a graded submodule of M with $N \nsubseteq K$, then $\left(K:_{R} N\right)$ is a graded n-absorbing primary ideal of R.
(2) If $G-\operatorname{rad}\left(A n n_{R}(N)\right)$ is a graded $(n-1)$-absorbing ideal of R, then $\sqrt{(K: R N))}$ is a graded $(n-1)$-absorbing ideal of R for every graded submodule K of M with $N \nsubseteq K$.
(3) $\left.G-r a d\left(\cap_{i=1}^{n} L_{i}:_{R} N\right)\right)$ is a graded $(n-1)$-absorbing ideal of R for every family of graded completely irreducible submodules $\left\{L_{1}, \ldots, L_{n}\right\}$ of M with $N \nsubseteq \cap_{i=1}^{n} L_{i}$ if and only if $G-\operatorname{rad}\left(A n n_{R}(N)\right)$ is a graded $(n-1)$-absorbing ideal of R.

Theorem

Let R be a G-graded ring, n a positive integer, M a graded R-module and N a graded n-secondary submodule of M.Then $a_{g} N$ is a graded n-secondary submodule of M for every $a_{g} \in h(R) \backslash A n n_{R}(N)$.

Theorem

Let n be a positive integer, R a G-graded ring and $f: M_{1} \rightarrow M_{2}$ a graded R-module homomorphism. If N is a graded n-secondary submodule of M_{1} with $f(N) \neq 0$, then $f(N)$ is a graded n-secondary submodule of M_{2}.

Theorem

Let n be a positive integer, R a G-graded ring, M a graded R-module and L, N two graded submodules of M with $L \subset N$. If N is a graded n-secondary submodule of M, then $\frac{N}{L}$ is a graded n-secondary submodule of the graded R-module $\frac{M}{L}$.

Let m be a positive integer, R_{i} a G-graded ring, M_{i} a graded R_{i}-module for every $1 \leq i \leq m, R=R_{1} \times \ldots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$. Clearly, R is a G-graded ring with $R_{g}=R_{1_{g}} \times \ldots \times R_{m_{g}}$ and M a graded R-module with $M_{g}=M_{1_{g}} \times \ldots \times M_{m_{g}}$ for every $g \in G$, see [14]. It is easy to show that every graded submodule of the graded R-module $M=M_{1} \times \ldots \times M_{m}$ is of the form $N=N_{1} \times \ldots \times N_{m}$, where N_{i} is a graded submodule of M_{i} for every $1 \leq i \leq m$. In this case, we call N_{i} 's the graded components of N.

Theorem

Let m, n be two positive integers and R, M the same as in above. If N is a graded n-secondary submodule of M, then every non-zero graded component N_{j} of N is a graded n-secondary submodule of the graded R_{j}-module M_{j}, where $1 \leq j \leq m$.

References

[1] Ansari-Toroghy, H.; Farshadifar, F. The dual notions of some generalizations of prime submodules. Comm. Algebra 2011, 39, 23962416.
[2] Ansari-Toroghy, H.; Farshadifar, F.; Maleki-Roudposhti, S. N -absorbing and strongly n -absorbing second submodules. Bol. Soc. Parana. Mat. 2021, 39(1), 922.
[3] Ansari-Toroghy, H.; Farshadifar, F. On the dual notion of prime submodules. Algebra Colloq. 2012, 19(spec01), 1109-1116.
[4] Ansari-Toroghy, H.; Farshadifar, F. On the dual notion of prime submodules(II). Mediterr. J. Math. 2012, 9, 327336.
[5] Ansari-Toroghy, H.; Farshadifar, F. 2-absorbing and strongly 2-absorbing secondary submodules of modules. Le Matematiche 2017, 72(1), 123135.
[6] Atani, S. E. On graded prime submodules. Chiang Mai J. Sci. 2006, 33, 37.
[7] Atani, S. E.; Farzalipour, F. Notes on the graded prime submodules. International Mathematical Forum 2006, 1, 18711880.
[8] Abu-Dawwas, R.; Al-Zoubi, K.; Bataineh, M. Prime submodules of graded modules. Proyecciones Journal of Mathematics 2012, 31, 355361.
[9] Ebrahimi Atani, S.; Farzalipour, F. On graded secondary modules. Turkish J. Math. 2007, 31, 371-378.
[10] Farzalipour F.; Ghiasvand, P. On the union of graded prime submodules. Thai J. Math. 2011, 9, 4955.
[11] Gopalakrishnan, N. S. Commutative Algebra. Oxonian Press Pvt. Ltd., New Delhi, 1984.
[12] Hazrat, R. Graded rings and graded Grothendieck groups. Cambridge University Press, Cambridge, 2016.
[13] Hamoda, M.; Ashour, A. E. On graded n-absorbing submodules. Le Matematiche 2015, LXX Fasc. II, 243-254.
[14] Nastasescu, C.; Van Oystaeyen, F. Methods of graded rings. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2004.
[15] MacDonald, I. G. Secondary representation of modules over a commutative ring. Sympos. Math. 1973, XI, 2343.
[16] Oral, K. H.; Tekir, U.; Agargun, A. G. On graded prime and primary submodules. Turkish J. Math. 2011, 35, 159167.
[17] Saber, S.; Alraqad, T.; Dawwas, R. A. On graded s-prime submodules. Mathematics 2020, 6(3), 25102524.
[18] Yasemi, S. The dual notion of prime submodules. Arch. Math.
(Brono) Tomas 2001, 37(4), 273-278.

THANK YOU VERY MUCH FOR YOUR ATTENTION

