Graded *n*-secondary submodules

Mahdieh Ebrahimpour

Department of Mathematics, Vali-e-Asr University, Rafsanjan, Iran

(日) (四) (문) (문) (문)

Throughout this work all rings are commutative with non-zero unity, unless it is expressly stated that R can be without unity. We first remind the dual of some classical graded concepts and then the dual of their extended graded notions is studied. A proper graded submodule N of a G-graded R-module M is said to be graded prime (primary) if $a_g \in h(R)$ and $x_h \in h(M)$ with $a_g x_h \in N$ implies $a_g \in (N :_R M)$ ($a_g \in \sqrt{(N :_R M)}$) or $x_h \in N$. Also, a proper graded ideal I of R is a graded prime (primary) ideal if I is a graded prime (primary) submodule of the graded R-module R. If I is a graded ideal of R, then G-rad $(I) = \{a \in R \mid a_g \in \sqrt{I}\}$.

イロト 不得 トイヨト イヨト

Lemma 1

Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M. Then the following statements are equivalent.

(1) *N* is a graded prime (primary) submodule of *M*.
(2) For every
$$a_g \in h(R)$$
 and $x \in M$, $a_g x \in N$ implies
 $a_g \in (N :_R M)$ ($a_g \in \sqrt{(N :_R M)}$) or $x \in N$.
(3) For every $a \in R$ and $x_h \in h(M)$, $ax_h \in N$ implies $a \in (N :_R M)$
($a \in G$ -rad($N :_R M$)) or $x_h \in N$.

From a functional point of view, a proper graded submodule N of a graded R-module M is a graded primary submodule, if for each $a_g \in h(R)$ the graded homomorphism $a_g :: \frac{M}{N} \to \frac{M}{N}$, that operates by multiplication, is either injective or nilpotent by the above lemma.

(1日) (1日) (日)

э

Let R be a G-graded ring and M a graded R-module. We say that a non-zero graded submodule N of M is graded secondary if for each $a_{g} \in h(R)$ the function $a_{g} : N \to N$, that operates by multiplication, is either surjective or nilpotent, i.e., for every $a_g \in h(R)$ either $a_g N = N$ or $a_g \in \sqrt{(Ann_R(N))}$. Note that this concept is a dual notion of graded primary submodules in a certain sense as follows. We say that M is a graded secondary R-module if M is a graded secondary submodule of itself. Also, we say that Mis a graded primary *R*-module if zero is a graded primary submodule of M. So the concept of graded secondary R-modules is just the dual notion of graded primary R-modules, see [9].

Let *n* be a positive integer. A proper graded submodule *N* of a graded *R*-module *M* is said to be graded *n*-absorbing (primary) if whenever $a_{g_1} \ldots a_{g_n} x_g \in N$ implies $a_{g_1} \ldots a_{g_n} \in (N :_R M)$ $(a_{g_1} \ldots a_{g_n} \in \sqrt{(N :_R M)})$ or $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} x_g \in N$ for some $1 \leq i \leq n$, where $a_{g_1}, \ldots, a_{g_n} \in h(R)$, $x_g \in h(M)$ and $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} x_g$ means $a_{g_1} \ldots a_{g_{i-1}} a_{g_{i+1}} \ldots a_{g_n} x_g$. So a graded 1-absorbing primary submodule is exactly a graded primary submodule. Also, a proper graded ideal *I* of *R* is called a graded *n*-absorbing (primary) ideal if *I* is a graded *n*-absorbing (primary) submodule of the graded *R*-module *R*, see [13].

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

In this work, we present a functional equivalent condition to the concept of graded *n*-absorbing primary submodules. So we can specify a dual notion of this concept in a certain sense, which we call that graded *n*-secondary submodules.

Next, a trivial extension of Lemma 1 is presented. Throughout, we consider the part (2) of Lemma 2 as the definition of graded *n*-absorbing (primary) submodules.

伺 ト イヨト イヨト

Lemma 2

Let *n* be a positive integer, *R* a *G*-graded ring, *M* a graded *R*-module and *N* a graded submodule of *M*. Then the following statements are equivalent.

(1) *N* is a graded *n*-absorbing (primary) submodule of *M*. (2) For every $a_{g_1}, \ldots, a_{g_n} \in h(R)$ and $x \in M$, $a_{g_1} \ldots a_{g_n} x \in N$ implies $a_{g_1} \ldots a_{g_n} \in (N :_R M)$ $(a_{g_1} \ldots a_{g_n} \in \sqrt{(N :_R M)})$ or $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} x \in N$ for some $1 \le i \le n$. (3) For every $a_1, \ldots, a_n \in R$ and $x_g \in h(M)$, $a_1 \ldots a_n x_g \in N$ implies $a_1 \ldots a_n \in (N :_R M)$ $(a_1 \ldots a_n \in G\text{-rad}(N :_R M))$ or $a_1 \ldots \widehat{a_i} \ldots a_n x_g \in N$ for some $1 \le i \le n$.

イロト イ部ト イヨト イヨト 二日

Next, we present a functional method, which gives us an equivalent condition to the concept of graded *n*-absorbing primary submodules. For this, we need some new definitions as follows.

Definition

Let R be a G-graded ring, M a graded R-module, N a proper graded submodule of *M*, *n* a positive integer, $a_{g_1}, \ldots, a_{g_n} \in h(R)$ and the graded homomorphism $a_{g_i}^*: a_{g_1} \dots \widehat{a_{g_i}} \dots a_{g_n} \frac{M}{M} \to \frac{M}{M}$, defined by $a_{\sigma_i}^*(a_{g_1} \dots \widehat{a_{g_i}} \dots a_{g_n}(x+N)) = a_{g_1} \dots a_{g_n} x + N$ for every $x \in M$, where 1 < i < n. Then (1) We say that the family $\{a_{\sigma_i}^* \mid 1 \le i \le n\}$ is injective if $a_{g_1} \dots a_{g_n} x \in N$ implies $a_{g_1} \dots \widehat{a_{g_i}} \dots a_{g_n} x \in N$ for some $1 \leq i \leq n$, where $x \in M$ (2) We say that the family $\{a_{g_i}^* \mid 1 \le i \le n\}$ is nilpotent, if $a_{\sigma_1}^* o \dots o a_{\sigma_n}^*$ is a nilpotent function.

Let *R* be a *G*-graded ring, *M* a graded *R*-module and *n* a positive integer. A proper graded submodule *N* of *M* is a graded *n*-absorbing primary submodule of *M* if and only if the family $\{a_{g_i}^* \mid 1 \le i \le n\}$ of graded homomorphisms is either injective or nilpotent for every $a_{g_1}, \ldots, a_{g_n} \in h(R)$.

< ロ > < 同 > < 三 > < 三 > 、

Definition

Let *n* be a positive integer and *R* a *G*-graded ring (not necessarily with unity). We say that a non-zero graded submodule *N* of a graded *R*-module *M* is a graded *n*-secondary submodule, if for every $a_{g_1}, \ldots, a_{g_n} \in h(R)$ there exists an $1 \leq i \leq n$ such that the graded homomorphism $a_{g_i}^{**} : N \to a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} N$, defined by $a_{g_i}^{**}(x) = a_{g_1} \ldots a_{g_n} x$ for every $x \in N$, is either surjective or nilpotent. So every graded 1-secondary submodule is just a graded secondary submodule.

We say that a graded *R*-module is a graded *n*-secondary *R*-module if *M* is a graded *n*-secondary submodule of itself. So the notion of graded *n*-secondary *R*-modules is just the dual notion of graded *n*-absorbing primary *R*-modules. Therefore, it can be concluded that the concept of graded *n*-secondary *R*-modules is just the dual notion of graded *n*-absorbing primary *R*-modules. Hence we can say that the notion of graded *n*-secondary submodules is the dual notion of graded *n*-absorbing primary submodules (in a certain sense). Let R be a G-graded ring, n, m two positive integers with $n \le m$ and M a graded R-module. Clearly, every graded n-secondary submodule of M is graded m-secondary. Next, we show that the converse is not true in general.

Example

Let $F = \mathbb{Z}_2$, G an arbitrary group, R the trivial G-graded polynomial ring F[x], S = Rx, J the graded ideal generated by $\{x + x^2, x + x^3, ...\}$ of R and $M = \frac{R}{J}$ as a graded S-module. We claim that M is not a graded secondary S-module, while it is a graded 2-secondary S-module. If there exists a positive integer m such that $x^m \in Ann_S(M)$, then $x^m \in J$. So there exists a positive integer k and non-zero $g_1, \ldots, g_k \in h(R)$ such that $x^m = g_1(x + x^{r_1}) + \ldots + g_k(x + x^{r_k})$, where r_1, \ldots, r_k are positive integers with $r_1 < r_2 < \ldots < r_k$.

Note that the number of x^{m} 's in the right side of the equality is an odd number and the number of summands of each of $g_i(x + x^{r_i})$ is an even number. Without loss of generality, we can assume that there exists an odd number $1 \le l \le k$ such that $x^m \in g_i(x + x^{r_j})$ for every $1 \le j \le l$. So $0 = [g_{r_1}(x + x^{r_1}) - x^m] + \ldots + [g_{r_l}(x + x^{r_l}) - x^m]$ $x^{r_l}(x) - x^m + g_{r_{l+1}}(x + x^{r_{l+1}}) + \ldots + g_{r_k}(x + x^{r_k})$, where the number of summands in the right side is an odd number and so the number of non-zero summands in the right side is also an odd number. Hence there exists an odd number *n* such that $0 = x^{\gamma_1} + \ldots + x^{\gamma_n}$, where $\gamma_1 < \gamma_2 < \ldots < \gamma_n$ which is impossible. Therefore, $x \notin \sqrt{(Ann_{S}(M))}$.

イロト 不同 トイヨト イヨト

We claim that $M \neq xM$. If not, there exists a $g \in h(R)$ such that $1 - xg \in J$ which is impossible. Because the elements of J are coefficients of x.

Now, we show that for each $f_1, f_2 \in h(S)$ either $f_1f_2M = f_1M$ or $f_1f_2M = f_2M$. Since $f_1, f_2 \in S$, there exist $g_1, g_2 \in h(R)$ such that $f_1 = xg_1$ and $f_2 = xg_2$. If the number of summands of g_1 is an even number, then $f_1f_2M = g_1g_2x^2M = g_1xM = f_1M = 0$. Because for every positive integers γ, δ such that $1 \leq \gamma \leq \delta$, $x^{\gamma} + x^{\delta} = x^{\gamma-1}(x + x^{\delta-\gamma+1}) \in J$. Similarly, if the number of summands of f_2 is an even number, then $f_1f_2M = f_2M = 0$. Now, suppose that the number of summands of each of f_1, f_2 is an odd number.

イロト 不同 トイヨト イヨト

Let $l \in h(R)$. We claim that there exists an $l_1 \in h(R)$ such that $g_1 \times l - g_1 g_2 x^2 l_1 \in J$. If the number of summands of l is an odd number, then put $l_1 = 1$. So the number of summands of $g_1 \times l - g_1 g_2 x^2 l_1$ is an even number and so $g_1 \times l - g_1 g_2 x^2 l_1 \in J$, as explained above. If the number of summands of l is an even number, then put $l_1 = 1 + x$. Hence the number of summands of each of $g_1 \times l, g_1 g_2 x^2 l_1$ is an even number. Thus $g_1 \times l - g_1 g_2 x^2 l_1 \in J$ and so $f_1 M \subseteq f_1 f_2 M$. Hence $f_1 M = f_1 f_2 M$. Thus either f_1^{**} is surjective or f_2^{**} is so.

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

Let R be a G-graded ring, n a positive integer and M a finitely generated graded R-module. If M is a graded n-secondary R-module, then M is a graded n-absorbing primary R-module.

Let *R* be a *G*-graded ring and *M* a graded *R*-module. A proper graded submodule *N* of *M* is said to be a graded completely irreducible submodule, if $N = \bigcap_{i \in I} N_i$ implies $N = N_i$ for some $i \in I$, where $\{N_i \mid i \in I\}$ is a family of graded submodules of *M*. It is easy to show that every proper graded submodule *K* of *M* is an intersection of graded completely irreducible submodules of *M*.

イロト 不得 トイヨト イヨト

Let R be a G-graded ring and N a non-zero graded submodule of a graded R-module M. It is not difficult to verify that N is a graded secondary submodule of M if and only if for every $a_g \in h(R)$ and every graded completely irreducible submodule K of M, $a_g N \subseteq K$ implies either $a_g \in \sqrt{Ann_R(N)}$ or $N \subseteq K$. Next, this result is extended and an equivalent condition to the concept of graded n-secondary submodules is presented.

Theorem

Let *n* be a positive integer, *R* a *G*-graded ring, *M* a graded *R*-module and *N* a non-zero graded submodule of *M*. Then *N* is a graded *n*-secondary submodule of *M* if and only if for every $a_{g_1}, \ldots, a_{g_n} \in h(R)$ and every graded completely irreducible submodules K_1, \ldots, K_n of *M*, $a_{g_1} \ldots a_{g_n} N \subseteq \bigcap_{j=1}^n K_j$ implies $a_{g_1} \ldots a_{g_n} \in \sqrt{Ann_R(N)}$ or $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} N \subseteq \bigcap_{j=1}^n K_j$ for some $1 \leq i \leq n$.

イロン 不得 とくほと くほとう

э

Definition

We say that a non-zero graded submodule N of a graded R-module M is a graded n-absorbing secondary (graded strongly n-absorbing secondary) submodule, if whenever $a_{g_1} \ldots a_{g_n} N \subseteq K$ implies $a_{g_1} \ldots a_{g_n} \in \sqrt{Ann_R(N)}$ or $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} N \subseteq K$ for some $1 \leq i \leq n$, where $a_{g_1} \ldots a_{g_n} \in h(R)$ and K is a graded completely irreducible submodule (a graded submodule) of M. For general modules see [2,5].

Next, we show that the concepts of graded *n*-secondary and graded strongly *n*-absorbing secondary submodules are equivalent, while these are not equivalent to the concept of graded *n*-absorbing secondary submodules.

Let *n* be a positive integer, *R* a *G*-graded ring, *M* a graded *R*-module and *N* a non-zero graded submodule of *M*. Then the following statements are equivalent.

(1) *N* is a graded *n*-secondary submodule of *M*. (2) for every $a_{g_1}, \ldots, a_{g_n} \in h(R)$ and every graded submodule *K* of *M*, $a_{g_1} \ldots a_{g_n} N \subseteq K$ implies $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} N \subseteq K$ for some $1 \leq i \leq n$ or $a_{g_1} \ldots a_{g_n} \in \sqrt{Ann_R(N)}$. (3) for every $a_{g_1}, \ldots, a_{g_n} \in h(R)$, $a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} N = a_{g_1} \ldots a_{g_n} N$ for some $1 \leq i \leq n$ or $a_{g_1} \ldots a_{g_n} \in \sqrt{Ann_R(N)}$.

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

Example

Let $n \geq 2$ be a positive integer, G an arbitrary group and R the trivial G-graded ring \mathbb{Z} , $p_{g_1} = 2, p_{g_2}, \ldots, p_{g_{n+2}}$ distinct positive prime integers, $s = p_{g_1} \ldots p_{g_{n+2}}$ and $M = \mathbb{Z}_s$ as a graded R-module. Clearly, every graded submodule of M is of the form $p_{g_1}^{\alpha_1} p_{g_2}^{\alpha_2} \ldots p_{g_{n+2}}^{\alpha_{n+2}} \mathbb{Z}_s$, where $0 \leq \alpha_j \leq 1$ for every $1 \leq j \leq n+2$. Let $T_k = p_{g_k} \mathbb{Z}_s$ for every $1 \leq k \leq n+2$. It is not difficult to verify that the only graded completely irreducible submodules of M are T_1, \ldots, T_{n+2} .

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $a_{h_1}, a_{h_2} \in h(R)$, with $a_{h_1}a_{h_2}T_1 \subseteq T_k$ for some $1 \leq k \leq n+2$. So $p_{g_k} \mid a_{h_1}$ or $p_{g_k} \mid a_{h_2}$. Thus either $a_{h_1}T_1 \subseteq T_k$ or $a_{h_2}T_1 \subseteq T_k$. Therefore, T_1 is a graded 2-absorbing secondary and so a graded n-absorbing secondary submodule of M. Evidently, $p_{g_2} \dots p_{g_{n+1}} T_1 \subseteq \bigcap_{i=2}^{n+1} T_i$. But there is no $2 \leq i \leq n+1$ such that $p_{g_2} \dots \widehat{p_{g_i}} \dots p_{g_{n+1}} T_1 \subseteq \bigcap_{i=2}^{n+1} T_i \subseteq T_i$, because $p_{g_i} / p_{g_1} \dots \widehat{p_{g_i}} \dots p_{g_{n+1}}$. Also, $p_{g_2} \dots p_{g_{n+1}} \notin \sqrt{Ann_R(T_1)}$. Therefore, T_1 is not a graded *n*-secondary submodule of *M* and so it is not a graded strongly n-absorbing secondary submodule of Mby the above theorem.

イロト イ部ト イヨト イヨト 二日

Let *R* be a *G*-graded ring, *M* a graded *R*-module and *n* a positive integer. If *N* is a graded *n*-secondary submodule of *M*, then $Ann_R(N)$ is a graded *n*-absorbing primary ideal of *R*.

Let *R* be a *G*-graded ring and *n* a positive integer. Clearly, if *I* is a graded *n*-absorbing primary ideal of *R*, then \sqrt{I} is a graded *n*-absorbing ideal of *R*.

Corollary

Let *R* be a *G*-graded ring, *M* a graded *R*-module and *n* a positive integer. If *N* is a graded *n*-secondary submodule of *M*, then $\sqrt{Ann_R(N)}$ is a graded *n*-absorbing ideal of *R*.

イロト イボト イヨト イヨト

Let *R* be a *G*-graded ring. If *N* is a graded *n*-secondary submodule of a graded *R*-module *M* with $p = \sqrt{Ann_R(N)}$, then we say that *N* is a graded *p*-*n*-secondary submodule of *M*.

Definition

Let *R* be a *G*-graded ring (not necessarily with unity) and *n* a positive integer. We say that a graded *R*-module *M* is graded *n*-divisible, if for every $x \in M$ and every $a_{g_1}, \ldots, a_{g_n} \in h(R)$ with $(a_{g_1} \ldots a_{g_n})^m \neq 0$ for every positive integer *m* there exists an $1 \leq i \leq n$ and a $y \in M$ such that $a_{g_1} \ldots a_{g_n} y = a_{g_1} \ldots \widehat{a_{g_i}} \ldots a_{g_n} x$. Clearly, if *M* is a non-zero graded 1-divisible *R*-module, then $Ann_R(M) \cap h(R) = 0$.

イロト 不得 トイヨト イヨト

Example

Let G be a group, I an index set, R_i a G-graded integral domain, K_i the field of fractions of R_i for every $i \in I$ and R the G-graded ring $\bigoplus_{i \in I} R_i$. Then $K = \bigoplus_{i \in I} K_i$ is a graded *n*-divisible R-module for every positive integer *n*.

Theorem

Let *R* be a *G*-graded ring, *n* a positive integer, *M* a graded *R*-module and *N* a non-zero graded submodule of *M* with $p = \sqrt{(Ann_R(N))}$. Then the following statements are equivalent. (1) *N* is a graded *p*-*n*-secondary submodule of *M*. (2) *N* is a graded *n*-divisible $\frac{R}{p}$ -module.

イロン イヨン イヨン ・

э

Let R be a G-graded ring and n, m two positive integers with $m \le n$. Evidently, every graded m-divisible R-module is a graded n-divisible R-module. Nevertheless, we show that the converse is not true in general.

Example

Let *R* be the \mathbb{Z} -graded polynomial ring F[x], where *F* is a field, *m*, *n* two positive integers with m < n, $T = \bigoplus_{i \in \mathbb{Z}} T_i$, where $T_i = R_i$ for every non-zero integer *i*, $T_0 = 0$, $S = \bigoplus_{i \in \mathbb{Z}} S_i$, where $S_i = R_i$ for every $i \ge n$, $S_i = 0$ for every i < n and $M = \frac{T}{S}$ as a *T*-module. Let $f_{g_1}, \ldots, f_{g_n} \in h(T)$ with $(f_{g_1} \ldots f_{g_n})^t \ne 0$ for every positive integer *t*. If $f + S \in M$, then $f_{g_1} \ldots f_{g_i} \ldots f_{g_n} f - f_{g_1} \ldots f_{g_n} x \in S$ for every $1 \le i \le n$. Thus *M* is an *n*-divisible *T*-module. Let $f_{g_1} = \ldots = f_{g_m} = x$. Then there is no $f + S \in M$ such that $x^m f + S = x^{m-1}(x + S)$. Therefore, *M* is not an *m*-divisible *T*-module.

イロン 人間 とくほと くほと

э

Recall that a proper graded ideal m of R is said to be a maximal graded ideal if $m \subseteq I \subseteq R$ implies I = m or I = R, where I is a graded ideal of R. We denote the set of all maximal graded ideals of R by g-Max(R).

Proposition

Let *R* be a *G*-graded ring, *n* a positive integer and *M* a graded *R*-module. If *N* is a graded submodule of *M* with $Ann_R(N) = p \in g-Max(R)$, then *N* is a graded *p*-*n*-secondary submodule of *M*.

(本語) シスヨシスヨシ

Let $n \ge 2$ be a positive integer, R a G-graded ring, M a graded R-module and N a graded n-secondary submodule of M. Then the following statements hold.

(1) If K is a graded submodule of M with $N \not\subseteq K$, then $(K :_R N)$ is a graded *n*-absorbing primary ideal of R.

(2) If G-rad $(Ann_R(N))$ is a graded (n-1)-absorbing ideal of R, then $\sqrt{(K:_R N)}$ is a graded (n-1)-absorbing ideal of R for every graded submodule K of M with $N \not\subseteq K$. (3) G-rad $(\bigcap_{i=1}^{n} L_i :_R N)$ is a graded (n-1)-absorbing ideal of Rfor every family of graded completely irreducible submodules $\{L_1, \ldots, L_n\}$ of M with $N \not\subseteq \bigcap_{i=1}^{n} L_i$ if and only if

G-rad $(Ann_R(N))$ is a graded (n-1)-absorbing ideal of R.

Let *R* be a *G*-graded ring, *n* a positive integer, *M* a graded *R*-module and *N* a graded *n*-secondary submodule of *M*. Then $a_g N$ is a graded *n*-secondary submodule of *M* for every $a_g \in h(R) \setminus Ann_R(N)$.

Theorem

Let *n* be a positive integer, *R* a *G*-graded ring and $f: M_1 \rightarrow M_2$ a graded *R*-module homomorphism. If *N* is a graded *n*-secondary submodule of M_1 with $f(N) \neq 0$, then f(N) is a graded *n*-secondary submodule of M_2 .

- 4 同 6 4 日 6 4 日 6

Let *n* be a positive integer, *R* a *G*-graded ring, *M* a graded *R*-module and *L*, *N* two graded submodules of *M* with $L \subset N$. If *N* is a graded *n*-secondary submodule of *M*, then $\frac{N}{L}$ is a graded *n*-secondary submodule of the graded *R*-module $\frac{M}{L}$.

Let *m* be a positive integer, R_i a *G*-graded ring, M_i a graded R_i -module for every $1 \le i \le m$, $R = R_1 \times \ldots \times R_m$ and $M = M_1 \times \ldots \times M_m$. Clearly, *R* is a *G*-graded ring with $R_g = R_{1_g} \times \ldots \times R_{m_g}$ and *M* a graded *R*-module with $M_g = M_{1_g} \times \ldots \times M_{m_g}$ for every $g \in G$, see [14]. It is easy to show that every graded submodule of the graded *R*-module $M = M_1 \times \ldots \times M_m$ is of the form $N = N_1 \times \ldots \times N_m$, where N_i is a graded submodule of M_i for every $1 \le i \le m$. In this case, we call N_i 's the graded components of N.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let m, n be two positive integers and R, M the same as in above. If N is a graded *n*-secondary submodule of M, then every non-zero graded component N_j of N is a graded *n*-secondary submodule of the graded R_j -module M_j , where $1 \le j \le m$.

く 同 ト く ヨ ト く ヨ ト

References

[1] Ansari-Toroghy, H.; Farshadifar, F. The dual notions of some generalizations of prime submodules. Comm. Algebra 2011, 39, 23962416.

[2] Ansari-Toroghy, H.; Farshadifar, F.; Maleki-Roudposhti, S. N-absorbing and strongly n-absorbing second submodules. Bol. Soc. Parana. Mat. 2021, 39(1), 922.

[3] Ansari-Toroghy, H.; Farshadifar, F. On the dual notion of prime submodules. Algebra Colloq. 2012, 19(spec01), 1109-1116.

[4] Ansari-Toroghy, H.; Farshadifar, F. On the dual notion of prime submodules(II). Mediterr. J. Math. 2012, 9, 327336.

[5] Ansari-Toroghy, H.; Farshadifar, F. 2-absorbing and strongly 2-absorbing secondary submodules of modules. Le Matematiche 2017, 72(1), 123135.

[6] Atani, S. E. On graded prime submodules. Chiang Mai J. Sci. 2006, 33, 37.

[7] Atani, S. E.; Farzalipour, F. Notes on the graded prime submodules. International Mathematical Forum 2006, 1, 18711880.

[8] Abu-Dawwas, R.; Al-Zoubi, K.; Bataineh, M. Prime submodules of graded modules. Proyecciones Journal of Mathematics 2012, 31, 355361.

[9] Ebrahimi Atani, S.; Farzalipour, F. On graded secondary modules. Turkish J. Math. 2007, 31, 371-378.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

э

[10] Farzalipour F.; Ghiasvand, P. On the union of graded prime submodules. Thai J. Math. 2011, 9, 4955.

[11] Gopalakrishnan, N. S. Commutative Algebra. Oxonian Press Pvt. Ltd., New Delhi, 1984.

[12] Hazrat, R. Graded rings and graded Grothendieck groups. Cambridge University Press, Cambridge, 2016.

[13] Hamoda, M.; Ashour, A. E. On graded *n*-absorbing submodules. Le Matematiche 2015, LXX Fasc. II, 243-254.

[14] Nastasescu, C.; Van Oystaeyen, F. Methods of graded rings. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2004. [15] MacDonald, I. G. Secondary representation of modules over a commutative ring. Sympos. Math. 1973, XI, 2343.

[16] Oral, K. H.; Tekir, U.; Agargun, A. G. On graded prime and primary submodules. Turkish J. Math. 2011, 35, 159167.

[17] Saber, S.; Alraqad, T.; Dawwas, R. A. On graded s-prime submodules. Mathematics 2020, 6(3), 25102524.

[18] Yasemi, S. The dual notion of prime submodules. Arch. Math. (Brono) Tomas 2001, 37(4), 273-278.

・ 同 ト ・ ヨ ト ・ ヨ ト

THANK YOU VERY MUCH FOR YOUR ATTENTION

イロン イロン イヨン イヨン

∃ < n < 0</p>

M. Ebrahimpour

Graded *n*-secondary submodules